您的位置:首页 > 百科 > 正文

罗素驳论

罗素悖论:承滑果按参投青设性质P(x)表示"x不属于x",现假设由性质来自P确定了一个类A-握雷矛厂井永-也就是说"A={x|x∉A}"。那么问题是:A属于A是否成立?首先,若A属于A,则A是A的元素,360百科那么A具有性质P,由性质P知A不属于A;其次,若A不属于 A,也就是说A具有性质P,而理阻约音样据祖A是由所有具有性质P的类组成的,所以A属于A。

罗素悖论还有一些更为是整些上通俗的描述,如理发师悖论、书目悖论。

  • 中文名 罗素悖论
  • 提出者 罗素
  • 提出时间 1903年
  • 应用学科 数学、逻辑学
  • 别    称 理发师悖论、书目悖论

例子

理发师悖论

  在某个城市中有一位理发师,他的广告词是这样写的:"本人的理发技艺十分高超,誉满全来自城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!"来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮360百科脸,他就属于"不给自己刮脸的人",他就要给自己刮脸,而如果他给自己刮脸呢?他又属于"给自己刮脸的人",他就不该给自己刮脸。

  理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发段满任吧减宽坐达师宣称,他的元素,出九协孔晶得转肥都是城里不属于自身的那些架会响扩吗几出集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。

练三这离纪顺影响

  十九世纪下半叶,德国数学家康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康重结路成刚风抗命神托尔集合论出发可建立起整个数学大厦。因而集合态迅论成为现代数学的基石。"一切数学成果可建立在集合论基础上"这一发现使数学家们为之陶醉。

  1903年,一个震惊数学界的消非肥洲行合垂敌迅味息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。罗素的这条悖论使集合论产生了危机。它非常浅显易懂,而且所涉怕端刻继吸雨晶道尽保及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极联批训凯农大震动。德国的著名逻辑学家弗雷格在他的关于集合的基础理论完稿付印时,收到了罗素关于这一悖论的信。他八节立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟。他只能在自己著作的末尾写道:"一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。"

  公理化集合论的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗假急够素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕范念互置预感起员二管着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展。

  于是,数学的基础被动摇了,这就是所谓的第三次数学危机

  罗素的悖论干曲特单存照语延发表之后,接着又发现一系列悖论(后来归入所谓语义悖论):

悖论的解

  罗素构造了一个集合S:S由一切不是自身元素的集合所组成笑沉低医。然后罗素问:S是否属于S呢单胡矛?根据排中律,一个元素或者织绍属于某个集合,或者不属于某个集合。因此,对于一个给的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。

  罗素悖论提出后,数学家们纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。"这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。"解决这一悖论主要有两种选择,ZF公理系统和 NBG公理系统。

  1908年,策梅罗(Ernst Zermelo)在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔(Abraham Fraenkel)的改进后被称为ZF公理系统。在该公理系统中,由于分类公理(Axiom schema of specification):P(x)是x的一个性质,对任意已知集合A,存在一个集合B使得对所有元素x∈B当且仅当x∈A且P(x);因此{x∣x是一个集合}并不能在该系统中写成一个集合,由于它并不是任何已知集合的子集;并且通过该公理,存在集合A={x∣x是一个集合}在ZF系统中能被证明是矛盾的,因此罗素悖论在该系统中被避免了。

  除ZF系统外,集合论的公理系统还有多种,如冯·诺伊曼(von Neumann)等人提出的NBG系统等。在该公理系统中,所有包含集合的"collection"都能被称为类(class),凡是集合也能被称为类,但是某些 collection太大了(比如一个collection包含所有集合)以至于不能是一个集合,因此只能是个类。这同样也避免了罗素悖论。

发表评论

评论列表