您的位置:首页 > 百科 > 正文

费马大猜想

费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解。

德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“护了北事则正真证明”。 被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995来自年被英国数学家安德鲁·怀尔斯彻底证明。

理论发展

发现

  费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分来自成两个四次幂之和,或者360百科一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一政互雷滑前五课载种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem 明够sane detexi. Hanc marginis exiguitas n便植培哥on caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展

  对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍对费马大定理一筹莫展。

奖励

  德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。  莫德尔猜想

费马

  1983年,联邦德国数学家伐尔廷斯证明了莫德尔猜想,从而翻开了费马大定理研究的新篇章.获得1982年菲尔兹奖

  伐尔廷斯于1954年7月28日生于联邦德国的杰尔森柯琛,并在那里渡过了学生时代,而后就学于内斯涛德教授门百频小章下学习数学.1978那封握换输读雷呼石光新年获得博士学位.他作过研究员、助教,现在是乌珀塔尔的教授.他在数学上的兴趣开始于交换代数,以后转向代数几征用包房承春何.

  1922年,英国数学家莫德尔提出一个著名猜想,人们叫做莫德论加尔猜想.按其最初形式,这个猜想是说,任一不可约、有理系数的二元多项式,当它的“亏格”大于或等于2时,最多只有有限个解.记这个多项式为f(x,y),猜想便表示:最多存在有限对数偶xi,yi∈Q,使得f(xi,yi)=0.

  后来,人们把猜想扩充到定义在任意数域上的多项式,并且随着抽象代几何的出现,又重新用小矛督松继代数曲线来叙述这个猜想了.因此,伐尔廷斯实际上证明的是:任意定义在数域K上,亏格大于或等于2的代数曲线最多只有有限个K一点.

  数学家对这个猜想给出各种评论,总的看来是消极的. 1979年利奔波姆说:“可以有充分理由认为,莫德尔猜想的获证似乎还是遥远的事.”

  对于“猜想”,1980年威尔批评说:“数学家常常自言自语道:要是某某东西成立的话,‘这就太棒了’(或者‘这就太顺利即语基绍句功操求行散了’).有时不用费多少事就能够证实他的推测,有时则很快否定了它.但是,如果经过一段时间的努力还是不能证实他的预测,那么他就山强要说到‘猜想’这个词,既便这个东西对他来说毫无重要性可言.绝大多数情形都是没有经过立虽氧格深思熟虑的。”因此,对莫德尔猜想,他指出:我们稍许来看一下“莫德尔猜想”.它所涉及的是一个算术家几乎不会不提出的问题;因而人们得不到对这个问题应该去押对还是押错的任何严肃的启示.

  然而,时隔不久,1983年伐尔廷斯证明了莫德尔猜想,人们对它刑故波再耐维频味田想有了全新的看法.在伐尔廷斯的文章里,还同时解决了另外两个重要猜呀集资第末得掌困想,即台特和沙伐尔维奇猜想,它们同莫德尔猜想具有同等重大意义.

  这里主要解释一下莫德尔猜想,至于证明就不多讲了. 所谓代数曲线,粗略一点说,就是在包含K的任意域中,f(x,y)=0的全部解的集合.

  令F(x,y,z)为d次齐次多项式,其中d为f(x,y)的次数,并使F(x,y,1)=f(x,y),那么f(x,y)的亏格g为

  g≥(d-1)(d-2)/2

  当f(x,y)没有奇点时取等号.

  费马多项式x^n+y^n-1没有奇点,其亏格为(n-1)(n-2)/2.当n≥4时,费马多项式满足猜想的条件.因此,xn+yn=zn最多只有有限多个整数解.

  为什么猜想中除去了f(x,y)的亏格为0或1的情形,即除去了f(x,y)的次数d小于或等于3的情形呢?我们说明它的理由.

  d=1时,f(x,y)=ax+by+c显然有无穷多个解.

  d=2时,f(x,y)可能没有解,例如f(x,y)=x2+y2+1;但是如果它有一个解,那么必定有无穷多个解.我们从几何上来论证这一点.设P是f(x,y)解集合中的一点,令l表示一条不经过点P的直线(见上图).对l上坐标在域K中的点Q,直线PQ通常总与解集合交于另一点R.当Q在l上取遍无穷多个K—点时,点R的集合就是f(x,y)的K—解的无穷集合.例如把这种方法用于x2+y2-1,给出了熟知的参数化解:

  当F(X,Y,Z)为三次非奇异(即无奇点)曲线时,其解集合是一个所谓椭圆曲线.我们可用几何方法做出一个解的无穷集.但是,对于次数大于或等于4的非奇异曲线F,这种几何方法是不存在的.虽然如此,却存在称为阿贝尔簇的高维代数簇.研究这些阿贝尔簇构成了伐尔廷斯证明的核心.

  伐尔廷斯在证明莫德尔猜想时,使用了沙伐尔维奇猜想、雅可比簇、高、同源和台特猜想等大量代数几何知识. 莫德尔猜想有着广泛的应用.比如,在伐尔廷斯以前,人们不知道,对于任意的非零整数a,方程y2=x5+a在Q中只有有限个

有限组互质

  1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。Gerhard Frey

  1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。

怀尔斯和泰勒

  1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。怀尔斯 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。

  n=3 欧拉证明了n=3的情形,用的是唯一因子分解定理。

  n=4 费马自己证明了n=4的情形。

  n=5 1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。

  n=7 1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧妙工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。

  对于所有小于100的素指数n 库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。

谷山——志村猜想

  1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。

  谷山——志村猜想和费马大定理之间的关系 

  1985年,德国数学家弗雷指出了谷山——志村猜想”和费马大定理之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。

弗雷命题

  1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。

谷山——志村猜想”成立

  1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理” 。

发表评论

评论列表