您的位置:首页 > 百科 > 正文

应用多元统计分析方法

《应用多元统计分析方法》是2005年06月由高等教育出版社出版的图书,作者是约翰逊 。本书适用于高等院校统计学专业和理工科各专业本科生和研究生作为双语教材使用。

  • 中文名称 应用多元统计分析方法
  • 作/译者 约翰逊
  • 出版社 高等教育出版社
  • 出版日期 2005年06月

出版信息

  ISBN:9787040165456 [十位:7040来自165457]

  页数:567 重约:0.782KG

  定价:¥43.30

图书目录

  1.APPLIED MULTIVARIATE METHODS

  1.1 An Overview of Multivariate Methods 1

  Variable-and Individual-Directed Techniques 2

  Creating New Variables 2

  Principal Components Analysis 3

  Factor Analysis 3

  Discriminant Analysis 4

  Canonical Discriminant An始调未特alysis 5

  Logistic Regression 5

  Cluster Analysis 5

同距她有自议飞原良两棉  Multivariate Analysis of Variance 6

  C360百科anonical Var找苏iates Analysis 7

  Canonical Correlation Analysis 7

  Where to Find the Preced住目听欢ing Topics 7

  1.2 Two Examples 8

  Independence of Experi心军mental Units 11

  1.3 依斯文输Types of Variables U

  1.4 Data Matrices and Vectors 12

  Variable Nota措知被和即序对即稳tion 13

  Data Matrix 13

  D最项员孙属个击ata Vectors 13

  Data Subscripts 14

  1.5 The Multivariate Normal Distribution 15

  Some Definitions 15

  Summarizin门假也三部买药g Multiva武成企牛毛你般维孔危riate Distributions 16

  Mean Vectors and Variance-Covariance Matrices 16

  Correlations and Correlation Matrices 17

  The Multivariate Normal Probability Density Function 19

  Bivariate Normal Distributions 19

  1.6 Statistical Computing 22

  Cautions About Comp另球超效态依读神uter Usage 22

  Mi征石编丰八距孩良尔棉ssing Values 22

  顶日械游书激式米Replacing Missing Values by Zeros 23

  Replacing Missing Values by Aver独曲拿士钟于ages 23

  Removing Rows of the Data Matrix 23

 掌兴背较修夫找材报也 Sampling Strategies 24

  Data Entry Err间纪停编拉江ors and Data Verification 24

  1.7 Mult破广游病花钢听略喜ivariate Outliers 25

  Locating Outliers 25

  Dealing with Outliers 25

  Outliers May Be Influential 26

  1.8 Multiv证极顶ariate Summary Statistics 26

  1.9 Standardized Data and/or Z Scores 27

  Exercises 28

  2.SAMPLE CORRELATIONS

  2.1 Statistical Tests and Confidence Intervals 35

  Are the Correlations Large Enough to Be Useful? 36

  Confidence Intervals by the Chart Method 36

  Confidence Intervals by Fishers Approximation 38

  Confidence Intervals by Rubens Approximation 39

  Variable Groupings Based on Correlations 40

  Relationship to Factor Analysis 46

  2.2 Summary 46

  Exercises 47

  3.MULTIVARIATE DATA PLOTS

  3.1 Three-Dimensional Data Plots 55

  3.2 Plots of Higher Dimensional Data 59

  Chernoff Faces 61

  Star Plots and Sun-Ray Plots 63

  Andrews Plots 65

  Side-by-Side Scatter Plots 66

  3.3 Plotting to Check for Multivariate Normality 67

  Summary 73

  Exercises 73

  4.EIGENVALUES AND EIGENVECTORS

  4.1 Trace and Determinant 77

  Examples 78

  4.2 Eigenvalues 78

  4.3 Eigenvectors 79

  Positive Definite and Positive Semidefinite Matrices 80

  4.4 Geometric Descriptions (p = 2) 82

  Vectors 82

  Bivariate Normal Distributions 83

  4.5 Geometric Descriptions (p = 3) 87

  Vectors 87

  Trivariate Normal Distributions 87

  4.6 Geometric Descriptions (p > 3) 90

  Summary 91

  Exercises 91

  5.PRINCIPAL COMPONENTS ANALYSIS

  5.1 Reasons for Using Principal Components Analysis 93

  Data Screening 93

  Clustering 95

  Discriminant Analysis 95

  Regression 95

  5.2 Objectives of Principal Components Analysis 96

  5.3 Principal Components Analysis on the Variance-Covariance

  Matrix 96

  Principal Component Scores 98

  Component Loading Vectors 98

  5.4 Estimation of Principal Components 99

  Estimation of Principal Component Scores 99

  5.5 Determining the Number of Principal Components 99

  Method 1 100

  Method 2 100

  5.6 Caveats 107

  5.7 PCA on the Correlation Matrix P 109

  Principal Component Scores 110

  Component Correlation Vectors 110

  Sample Correlation Matrix 110

  Determining the Number of Principal Components 110

  5.8 Testing for Independence of the Original Variables 111

  5.9 Structural Relationships 111

  5.10 Statistical Computing Packages 112

  SASR PRINCOMP Procedure 112

  Principal Components Analysis Using Factor Analysis

  Programs 118

  PCA with SPSSs FACTOR Procedure 124

  Summary 142

  Exercises 142

  6. FACTOR ANALYSIS

  6.1 Objectives of Factor Analysis 147

  6.2 Caveats 148

  6.3 Some History of Factor Analysis 148

  6.4 The Factor Analysis Model 150

  Assumptions 150

  Matrix Form of the Factor Analysis Model 151

  Definitions of Factor Analysis Terminology 151

  6.5 Factor Analysis Equations 151

  Nonuniqueness of the Factors 152

  6.6 Solving the Factor Analysis Equations 153

  ……

  7.DISCRIMINANT ANALYSIS

  8.LOGISTIC REGRESSION METHODS

  9.CLUSTER ANALYSIS

  10.MEAN VECTORS AND VARIANCE-COVARIANCE MATRICES

  11.MULTIVARIATE ANALYSIS OF VARIANCE

  12.PREDICTION MODELS AND MULTIVARIATE REGRESSION

  APPENDIX A:MATRIX RESULTS

  APPENDIX B:WORK ATTITUDES SURVEY

  APPENDIX C:FAMILY CONTROL STUDY

  REFERENCES

  INDEX

内容提要

  本费反运书内容包括:应用多元回归分析方法,样本相关,多元数据点图,特征值和特征向量,复合分析原理,因子分析,判别分析,逻辑斯谛来自回归方法,聚类分析,均值向量和方差-协方差矩阵,方差多元分析,预测模型和多元回归。本书统计内容覆盖面广于国内的概率统计教材,内容安排颇有新意,例如,在处理回归分析时,强调了从建模的观点与需要来考虑。360百科本书设有大量的例题与练习题,实搞感虽维冷磁源或用面丰富,统计思维清晰。

发表评论

评论列表