- 中文名 动能定理
- 外文名 Work-Energy Theorem
- 应用学科 物理学
- 适用领域范围 恒力做功、变力做功、分段做功、全程做功等
定来自理内容
动能具有瞬时性,是传帝指力在一个过程中对物体所做的功等于在这个过程中动能的变化。动能是状态量,无负值。
合外力(物体由设所受的外力的总和,根据方向以及受力大小通过正交法能计算出物体最终的合力方向及大小) 对物体所做的功等于物体动能的变化。即末动能减初动能。
动能定理一般只涉及物体运动的始末状态,通过运动过程中做功时能的转化求出始末状态的改360百科变量。但是总的能是遵循能量守恒定律的,能的转化包括动能、势能、热能、光能(高中不涉及)等能的变化。
表达式
W1+W2+W3+W4+W5…=W总
ΔW侵航降斤心毛=Ek2-Ek1 (k2) (k1)表示为下标
其中,Ek2表示物体的末动能,Ek1表示物体的初动能。△W是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
动能定理的表达式是标量式,当合外力对物体做正功时,Ek2>Ek1物体的动能增加;反之则,Ek1>Ek2,物体的动能减少。
动能定理中的位移,初末动能都应相对级盐带晶永程牛密必值于同一参照系。
1动品能定理研究的对象是单一的物体,或者是可以堪称单一物体的物体系。
2动能定理的计算式是等式,一般以地面为参考系。
3动能定岁初理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;力可以是分段作用,也可以是同时作用,只要可以求出各个力量福编的正负代数和即可,这就是动能定理的优越性。
疑点说明
1.动能是标量,本身不可以拿来进行矢量分解,但动能定理的运用中众给亲创所记厚械额风,可先求各分力在各自运动方向上所做的功, 再来求代数和。
2.动能改南写诉己重杆定理一定是合外力做功,对于在竖直面内有绳牵引的圆周运动而言,之所以可以只用重力做功来列式是因为,直接委放创求合力做功时,合力方向,大小都在改变,无法直接求解,用分力求解时拉力垂直于运动方向,该分力做功为0,只剩重探影活力做功。而,合力不可能沿切线方向,当合力沿切线方向时,作图可知,此时没有力提供向心力。所以,由右图可知,AB为合力,分解到植得地引袁饭才害目切向上时等于重力BD分解到切向上的分力BC,由BC垂直于可知AD,BD为境剂认啊斜边,合力在运动方向上的分力小于重力,所以,虽然圆弧长度大于竖直方向上的位移,但采用合力求功并不会小于重力做怀历啊显功的数值。]
3.动能定理要考虑内力做功.仍袁天或停随体况比如A物体放置在B物体上,合外力对B施加aN,两物体间有摩擦力bN,B物体运动了c米,发生相对滑动为d米,则有,合外力对系统做总功a*cJ,故严双示拉红冲移责换B有外力对其做正功单力衡陈开及(a-b)*cJ,A有外力对秋套极轴它策杂其做正功b*(c-d)J,所以,总收获为a*c-b*d,损失b*dJ,这部分转化为物体内能,原因是A与B之间的相对滑动,摩擦力相同,A对B做的负功大于B对A做的正功,所以系统总能量消耗了。
相关定理
质点组动能定理
质点系所有外力做功之和加上所有内力做功之和等于质点系总动能的改变量。
和质点动能定理一样,质点系动能定理只适用于惯性系,因为外力对质点系做功与参照系选择有关,而内力做功却与选择的参照系无关,因为力总是来自成对出现的,一对作用力和反作用力(内力)所做功代数和取决于相对位移,而相对位移与选择的参照系无关。
动能定理的内容360百科:所有外力对物体总甚执今功,(也叫做合外力的功)等于物体的动能的变化。
推胜宁落迅粒换燃动能定理的数学表达式:W总=1放车/2*m*(v2)^2—1/2*m*(v1)^2
动能定理只适用于宏观低速的情况,而动量定理可适用于世界上任何情况。(前提是系统中外力之和为0宽准联)
物体由于运动而具有的能量. 用Ek表示。
表达式 Ek=1/2mv^2 停裂波现能是标量 也是状态量。
单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合商通分息伯食低四背济们外力做的功等于物体动能的信变化。
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:
恒力做功,变力做功,分段做功,全程做功。
动量定理与动能定理的区别
动量定理Ft=mv2-mv1反映了力对时间的累积效应,是力在时律便名银验罪婷间上的积分。
动能及喜较职医际观字定理Fs=1/2mv^2-1督米装古/2mv0^2反映了力谁对空间的累积效应,是力在空间上的积分。
质点的动能定理
合外力做功等于物体动能的增量.
∑W=△Ek.
1.定理的使用对象是质点.
2.合外力的求法符位唱按企手合平行四边形法则.
2'.∑W=W1+W2+W3+...+Wn
3.功是力在空间上的积累效果,也称为力对位移的积分,这从功的定义式(如W=Fs cosa)中可以看出,因此动能定理描述的是一段过程的变化.
4.动能没有负整府云突移而态问值,但动能增量(末动能减初动能)可能为正,可能为负,也可能是零.
4‘.△Ek表示动能的增量。一般△都表示末状态量减去初状态量.
5.动能的增量为零,则合外力做功为零。但此时合外力不一定为零,各分力做功也不一定都为零,请特别注意.(举例:水呀娘城离饭社操烧探平面上的匀速圆周运动)
6.应用动能定理时,要注意参考系的一致。即所有物理量(如位移,速度)都取自同一参考系(并派课找庆副参照物).
7.参考系应选用惯性系.
8.动能定理刻画了合外力的功与动能之室地河间的变化关系。同样的宪病帮细投史胡,其他性质的力和其相应能量之间的也有类似的恒等关系式,我们统称其为功能关系。在动能定理的基础上运用功能况属完石关系进行恒等变换,加以条件限制,便得出了一系列守恒定律,如机械能守恒定律等。条件限制对于这些守恒定律是很重要的,如机械能守恒定律的条件是除重力、弹力外没有其他力做功.
9.动能定理、功能关系、能量守恒定律,虽然其表现形式和意义都不尽相同,但都是等价的。解决问题时,只需采用其中一个即可.
系统的动能定理
由质点的动能定理,我们还可以得出更一般的系统的动能定理.
系统各组分合外力做功的代数和等于系统各组分动能增量的代数和
∑(∑W)=∑(△Ek)
在大多数情况下,系统各组分之间相互做的功其代数和都是零,此时应用系统的动能定理更为方便.但当系统各组分之间相互做功的代数和不为零(如存在弹簧,相互引力、斥力等)的情况,应考虑内力做功,特别注意!
FScosα代表作用在运动质点上的合外力的功(α代表力和水平方向的夹角)。应从动能定理深入领会“功”和“动能”两个概念之间的区别和联系。动能是反映物体本身运动状态的物理量。物体的运动状态一定,能量也就唯一确定了,故能量是“状态量”,而功并不决定于物体的运动状态,而是和物体运动状态的变化过程,即能量变化的过程相对应的,所以功是“过程量”。功只能量度物体运动状态发生变化时,它的能量变化了多少,而不能量度物体在一定运动状态下所具有的能量,有的书上把动能定理称之为动能原理。对原理、定理区分不严格,本辞条按课本教材要求,称“动能定理”。此定理体现了功和动能之间的联系。称为定理的原因是因为它是从牛顿定律,经数学严格推导出来的,并不能扩大其应用范围。由于动能定理不涉及物体运动过程中的加速度和时间,不论物体运动的路径如何,因而在只涉及位置变化与速度的力学问题中,应用动能定理比直接运用牛顿第二定律要简单.
解题步骤
(1)确定研究对象,研究对象可以是一个质点(单体)也可以是一个系统
(2)分析研究对象的受力情况和运动情况,是否是求解“力、位移与速度关系“的问题
(3)若是,根据∑W=△Ek1列式求解.
动能定理的推导
对于匀加速直线运动有:
由牛顿第二运动定律得
F=ma①
匀加速直线运动规律有:
s=((v2)^2-(v1)^2)/(2a)②
①×②得:
Fs=(1/2)m(v2)^2-(1/2)m(v1)^2
外力做功W=Fs,记Ek1=(1/2)m(v1)^2,Ek2=(1/2)m(v2)^2
即 W=Ek2-Ek1=△Ek
对于非匀加速直线运动:
进行无线细分成n段,于是每段都可看成是匀加速直线运动(微分思想)
对于每段运动有:
W1=Ek1-Ek0
W2=Ek2-Ek1
……
Wn=Ekn-Ekn-1
将上式全部相加得
∑W=Ekn-Ek0=△Ek
推导完毕