又称磁性液体、铁磁流体或磁液,是一种新型的功能材来自料,它既具有液体的流动性又具有固体磁性材料的磁性。是由直径为纳米量级(10360百科纳米以下)的磁性固体颗粒、基载液(也叫媒体)以及界面活性剂三者混合而成的一种稳定的胶状液体。该流体在静态时无磁性吸引过板征级机力,当外加磁场作用时,才表现出磁性,正因如此,它才在实际中有着广泛的应用,在理论上具有很高的学术价值。用纳米金属己笔血通另角及合金粉末生产的磁流体配女里齐性能优异,可广别眼才航取套妒误尽泛应用于各种苛刻条件的磁性流体密封括真任、减震、医疗器械、声音调节、光背显示、磁流体选矿等领域。
- 中文名称 磁流体
- 简介 又称磁性液体、铁磁流体或磁液
- 词性 名词
- 分类 材料
基本介绍
磁流体作为一种特殊的功能材料,是把纳米数量级(来自10纳米左右)的磁性粒子包裹一层长链的表面活性剂,均360百科匀的分散在基液中形成的一种均匀稳定乡马特宽土式望当的胶体溶液。磁流体由纳米磁性颗粒、基液和表面活百性剂组成。一般常用的有Fe、Ni、Co等作为磁性颗粒,以水、有机溶剂、油等作为基液年抗井效居批振抗,以油酸等作为活性磁搞聚基打反克称减剂防止团聚。由于磁流充执才研南树只体具有液体的流动性和固体的磁性,使得磁流体呈现出许石阶多特殊的磁、光、电现象,优防路印显如法拉第效应、双折射效应和线二向色性等。这些性质在光调制、光开关、光隔离器和传感器等领域有着重要的应用前景。
图片 图片磁流体在磁场的作用下形成丰富的微观结构,这些微观还放肥剧迫至句带结构对光产生不同的影响,能在很大的程度上改变光的透射率和折射率、产生大的法拉第旋转、磁二心历析武交械斯及题注向色散性、克尔效应等。磁流体的这种在磁场中的特性可以用在磁光开关、磁光隔离器、磁光调制器、粗波分复用器等。
磁流体力学是结合经典流体力学和电动力学的方法,研究导电流体和磁场相互作用的学科,它包括磁流体静力学和磁流体动力学两个分支。
磁流体静力学研究导电流体在磁场力作用于静平衡的问题;磁流体动力学研究导电流体与磁证弱容祖眼族孩场相互作用的动力学或运动规律。磁流体力学通常指磁流体动力学,而磁流体静力学被看作磁流体约危世动力学的特殊情形。
导电流体有等离子体和液态金属等。等离子体是电中性电离气体,含有足够多的自攻使间由带电粒子,所以它乙河细架红长的动力学行为受电磁力支配。宇宙中的物质几乎全都是等离子体,但对地球来说血含突香认时察杂收做一,除大气上层的电离层和辐射带是等离子体外,地球表面附近(除闪黑游音阿口杀黄电和极光外)一般不存在自然等离子体,但可通过气体放律顶黑讨货误电、燃烧、电磁激波管、记及相对论电子束和激光等方法产生人工等离子体。
能应用磁流体课住怕念蛋眼宗力学处理的等离子体温度范围颇宽,从磁流体发电的几千度到受控热核反应的几亿度量级(还没有包括固体等离子体)。因此,磁流体力学同物理学的许多分支以及核能、化学、冶金、航天等技术科学都有联系。
发展简史
1832年法拉第首次提出有关磁流体力学问题。他根据海水切割地球磁场产生电动势的想法,测量泰晤士河两岸间的电位差,希望测出流速,但因河水电阻大、地球磁场弱和测量技术差,未达到目的。1937年哈特曼根据法拉第的想法,对水银在磁场中的流动进行了定量实验,并成功地提出粘性不可压缩磁流体力学流动(即哈特曼流动)的理论计算方法。
1940~1948年阿尔文提出带电单粒子在磁场中运动轨道的"引导中心"理论、磁冻结定理、磁流体动力学波(即阿尔文波)和太阳黑子理论,1949年他在《宇宙动力学》一书中集中讨论了他的主要工作,推动了磁流体力学的发展。1950年伦德奎斯特首次探讨了利用磁场来保存等离子体的所谓磁约束问题,即磁流体静力学问题。受控热核反应中的磁约束,就是利用这个原理来约束温度高达一亿度量级的等离子体。
然而,磁约束不易稳定,所以研究磁流体力学稳定性成为极重要的问题。1951年,伦德奎斯特给出一个稳定性判据,这个课题的研究至今仍很活跃。
制备方法
来自 磁流体制备方法主要有研造氧站曲真它分报抓磨法,解胶法,热分解法,放电法等。
(1)碾磨法。即把磁性材料和活性剂、载液一屋茶斯起碾磨成极细的颗粒,然后用离心法或磁分离法将大颗粒分离出来,从而得到所需的磁流体。这种方法是最直接的方法,但很难得到300nm以下直径的磁流体颗粒。
(2)解胶法。是铁盐或亚铁盐在化学作用下产生Fe3O4或γ-Fe2O3,然后加分散剂和载体,并加以搅拌,使其磁性颗粒吸附其中,最后加热后将胶体和溶液分开,得到磁流360百科体。这种方法可得到较小虽衡扬次赶材属晶呢颗粒的磁流体,且成本不高,但只使用于非水系载体的磁流体的制作。
(3)热分解法。是将磁性材料的原料溶入有机溶剂,担左试然后加热分解出游离金属,再在溶液中加入分散剂后分离,溶入载体就得到磁流体。
(4)蒸着法。是在真空条件下把高纯度的磁性材料加热蒸发,蒸发出来的微粒遇到由分散剂和载体组成的地下液膜后凝固般办而蛋括练负杀斤祖达,当下地液膜和磁双率处围性微粒运动到下地液中,混部故界脚席德称合均匀就得到磁流体。这种方法得到的磁流体微粒很细,一般在2爱帝济草评清老研-10nm的粒子居多。
(5)放电法。其原理与电火花加工相仿,是在装满工作吗巴汉沉但液(经常与载体相同)的容器中将磁性材料粗大颗粒放在2个电极之间,然后加上脉冲电压进行电火花放电腐蚀,在工作液中凝固成微小颗吗垂提溶新谈刘项课紧粒,把大颗粒滤去后加分散剂即可得到磁流体。
研究内容
研究磁流体问题,首先是建立磁流体力学基本方程组,其次是用这个方程组来解决各种问题。磁流体力学主要用来研究解决的单兵有:
理想导电流体运动对磁场影响的问题;或流体静止时,流体电阻对磁场影响的问题,其中包括磁冻结和磁扩散。
通过磁场力来考察磁场对静止导电流体或理想导电流体的约束机制。这个问题是磁流体静厚衡执站环儿破两通力学的研究范畴,对受控热核反供便肉参地开着应十分重要。磁流体静力学在天体物理中,例如在研究太阳黑子的平衡、日珥的新银支撑、星际间无作用力场等问题的解决中也很重要。
研究磁场力对导电流体定常运动的影响。方程的非线性使磁流体动力学流动的数学分析复杂化低顺速握果弱宣乎翻,通常要用近似方法或数值法求解。它们虽话检状望各航预然是简化情况的解,然而清晰地阐明了基本的流动规律冷报支,利用这些规律至少可以定性地讨论更复杂的磁流体动力学流动。
研究磁流体动力学跑空乐波,包括小扰动波、有限振幅波和激波。了解等离子体中波的传播规律,可以探测等离子体的某些性质。此外,激波理论在电磁激波管、天体物理和地球物理上都有重要的应用。
研究方法
等离子体的密度范围很宽。对于极其稀薄的等离子体,粒子间的碰撞和集体效应可以忽略,可采用单粒子轨道理论研究等离子体在磁场中的运动。对于稠密等离子体,粒子间的碰撞起主要作用,研究这种等离子体在磁场中的运动有两种方法。一是统计力学方法,即所谓等离子体动力论,它从微观出发,用统计方法研究等离子体在磁场中的宏观运动;二是连续介质力学方法即磁流体力学,把等离子体当作连续介质来研究它在磁场中的运动。
磁流体力学是在非导电流体力学的基础上,研究导电流体中流场和磁场的相互作用。进行这种研究必须对经典流体力学加以修正,以便得到磁流体力学基本方程组。
磁流体密封 2磁流体力学基本方程组具有非线性且包含方程个数又多,所以求解困难。但在实际问题中往往不需要求最一般形式的方程组的解,而只需求某一特殊问题的方程组的解。一般应用量纲分析和相似律求得表征一个物理问题的相似准数,并简化方程,即可得到有实用价值的解。
磁流体力学相似准数有雷诺数、磁雷诺数、哈特曼数、马赫数、磁马赫数、磁力数、相互作用数等。求解简化后的方程组不外是分析法和数值法。利用计算机技术和计算流体力学方法可以求解较复杂的问题。
研究困境
磁流体力学的理论很难像普通流体力学理论那样得到充分的验证。由于在常温下可供选择的介质很少,同时需要很强的磁场才能观察到磁流体力学现象,故不易进行模拟。模拟天体大尺度的磁流体力学问题更不易在实验室中实现。所以磁流体力学的理论有的可以得到定量验证,有的只能得到定性或间接的验证。当前有关磁流体力学的实验是在各种等离子体发生器和受控热核反应装置中进行的。
实际应用
磁流体力学主要应用于三个方面:天体物理、受控热核反应和工业。
宇宙中恒星和星际气体都是等离子体,而且有磁场,故磁流体力学首先在天体物理、太阳物理和地球物理中得到发展和应用。当前,关于太阳的研究课题有:太阳磁场的性质和起源,磁场对日冕、黑子、耀斑的影响。此外还有:星际空间无作用力场存在的可能性,太阳风与地球磁场相互作用产生的弓形激波,新星、超新星的爆发,地球磁场的起源,等等。
磁流体力学在受控核反应方面的应用,有可能使人类从海水中的氘获取巨大能源。对氘、氚混合气来说,要求温度达到5000万到1亿度,并对粒子密度和约束时间有较高的要求。而使用环形磁约束装置在受控热核反应的研究中显出较好的适用性和优越性。
磁流体力学除了与开发和利用核聚变能有关外,还与磁流体发电密切联系。磁流体发电的原理是用等离子体取代发电机转子,省去转动部件,这样可以把普通火力发电站或核电站的效率提高15~20%,甚至更高,既可节省能源,又能减轻污染。
飞行器再入大气层时,激波、空气对飞行器的摩擦,使飞行器的表面空气受热而电离成为等离子体,因此利用磁场可以控制对飞行器的传热和阻力。但由于磁场装置过重,这种设想尚未能实现。
此外,电磁流量计、电磁制动、电磁轴承理论、电磁激波管等也是磁流体力学在工业应用上所取得的成就。
磁流体发电
磁流体发电是一种新型的高效发电方式,其定义为当带有磁流体的等离子体横切穿过磁场时,按电磁感应定律,由磁力线切割产生电;在磁流体流经的通道上安装电极和外部负荷连接时,则可发电。
为了使磁流体具有足够的电导率,需在高温和高速下,加上钾、铯等碱金属和加入微量碱金属的惰性气体(如氦、氩等)作为工质,以利用非平衡电离原理来提高电离度。前者直接利用燃烧气体穿过磁场的方式叫开环磁流体发电,后者通过换热器将工质加热后再穿过磁场的叫闭环磁流体发电。
磁流体发电本身的效率仅20%左右,但由于其排烟温度很高,从磁流体排出的气体可送往一般锅炉继续燃烧成蒸汽,驱动汽轮机发电,组成高效的联合循环发电,总的热效率可达50%~60%,是目前正在开发中的高效发电技术中最高的。同样,它可有效地脱硫,有效地控制NOx的产生,也是一种低污染的煤气化联合循环发电技术。
磁流体密封
磁流体密封装置是由不导磁座、轴承、磁极、永久磁铁、导磁轴、磁流体组成,在磁场的作用下,使磁流体充满环形空间,建立起一系列"O型密封圈",从而达到密封的效果。